9 research outputs found

    Comprehensive measurement framework for enterprise architectures

    Full text link
    Enterprise Architecture defines the overall form and function of systems across an enterprise involving the stakeholders and providing a framework, standards and guidelines for project-specific architectures. Project-specific Architecture defines the form and function of the systems in a project or program, within the context of the enterprise as a whole with broad scope and business alignments. Application-specific Architecture defines the form and function of the applications that will be developed to realize functionality of the system with narrow scope and technical alignments. Because of the magnitude and complexity of any enterprise integration project, a major engineering and operations planning effort must be accomplished prior to any actual integration work. As the needs and the requirements vary depending on their volume, the entire enterprise problem can be broken into chunks of manageable pieces. These pieces can be implemented and tested individually with high integration effort. Therefore it becomes essential to analyze the economic and technical feasibility of realizable enterprise solution. It is difficult to migrate from one technological and business aspect to other as the enterprise evolves. The existing process models in system engineering emphasize on life-cycle management and low-level activity coordination with milestone verification. Many organizations are developing enterprise architecture to provide a clear vision of how systems will support and enable their business. The paper proposes an approach for selection of suitable enterprise architecture depending on the measurement framework. The framework consists of unique combination of higher order goals, non-functional requirement support and inputs-outcomes pair evaluation. The earlier efforts in this regard were concerned about only custom scales indicating the availability of a parameter in a range.Comment: 22 Page

    Geoeconomic variations in epidemiology, ventilation management, and outcomes in invasively ventilated intensive care unit patients without acute respiratory distress syndrome: a pooled analysis of four observational studies

    No full text
    Background: Geoeconomic variations in epidemiology, the practice of ventilation, and outcome in invasively ventilated intensive care unit (ICU) patients without acute respiratory distress syndrome (ARDS) remain unexplored. In this analysis we aim to address these gaps using individual patient data of four large observational studies. Methods: In this pooled analysis we harmonised individual patient data from the ERICC, LUNG SAFE, PRoVENT, and PRoVENT-iMiC prospective observational studies, which were conducted from June, 2011, to December, 2018, in 534 ICUs in 54 countries. We used the 2016 World Bank classification to define two geoeconomic regions: middle-income countries (MICs) and high-income countries (HICs). ARDS was defined according to the Berlin criteria. Descriptive statistics were used to compare patients in MICs versus HICs. The primary outcome was the use of low tidal volume ventilation (LTVV) for the first 3 days of mechanical ventilation. Secondary outcomes were key ventilation parameters (tidal volume size, positive end-expiratory pressure, fraction of inspired oxygen, peak pressure, plateau pressure, driving pressure, and respiratory rate), patient characteristics, the risk for and actual development of acute respiratory distress syndrome after the first day of ventilation, duration of ventilation, ICU length of stay, and ICU mortality. Findings: Of the 7608 patients included in the original studies, this analysis included 3852 patients without ARDS, of whom 2345 were from MICs and 1507 were from HICs. Patients in MICs were younger, shorter and with a slightly lower body-mass index, more often had diabetes and active cancer, but less often chronic obstructive pulmonary disease and heart failure than patients from HICs. Sequential organ failure assessment scores were similar in MICs and HICs. Use of LTVV in MICs and HICs was comparable (42·4% vs 44·2%; absolute difference -1·69 [-9·58 to 6·11] p=0·67; data available in 3174 [82%] of 3852 patients). The median applied positive end expiratory pressure was lower in MICs than in HICs (5 [IQR 5-8] vs 6 [5-8] cm H2O; p=0·0011). ICU mortality was higher in MICs than in HICs (30·5% vs 19·9%; p=0·0004; adjusted effect 16·41% [95% CI 9·52-23·52]; p<0·0001) and was inversely associated with gross domestic product (adjusted odds ratio for a US$10 000 increase per capita 0·80 [95% CI 0·75-0·86]; p<0·0001). Interpretation: Despite similar disease severity and ventilation management, ICU mortality in patients without ARDS is higher in MICs than in HICs, with a strong association with country-level economic status
    corecore